Engineering Note

プログラミングなどの技術的なメモ

Python x86エミュレータの作成(eflags)

cpu

本記事はPythonで簡単なx86エミュレータを作成します。

前回 ではサブルーチンを呼び出す命令であるcall/retについて学びました。

今回は条件分岐命令で使用されるeflagsの使い方について学んでいきます。

 

 

eflagsとは

前回 ではサブルーチンを呼び出す命令であるcall/retについて学びました。

 

 

今回は、変数の状態により処理を分岐させる条件分岐命令を行うために使用されるeflagsというフラグレジスタについて学んでいきます。

 

eflagsは以下のような32ビットの各ビットをそれぞれフラグとして使用します。

 

fig1. eflagsの概要

fig1. eflagsの概要

 

上記の中で今回は以下の4つを実装します。

 

  • CF(キャリーフラグ):演算結果で繰り上がりや繰り下がりがあれば1をセット
  • ZF(ゼロフラグ):演算結果が0であれば1にセット
  • SF(サインフラグ):演算結果で符号が負になれば1をセット
  • OF(オーバーフローフラグ):符号付き演算結果で桁あふれが発生したら1をセット

 

なお、上記の条件に当てはまらなければ0にセット(クリア)されます。

 

まず、以下のC言語プログラムについて見ていきます。

 

 // sum.c
int sum(int n){
    int sum = 0;
    int i;
    for (i = 1; i <= n; i++){
        sum += i;
    }
    return sum;
}

int main(){
    return sum(5);
}

上記は1から与えられた引数までの合計を計算し返すプログラムです。

 

これを逆アセンブルしたものを以下に記します。 

00000000  E831000000        call 0x36
00000005  E9F683FFFF        jmp 0xffff8400
0000000A  55                push ebp
0000000B  89E5              mov ebp,esp
0000000D  83EC10            sub esp,byte +0x10
00000010  C745FC00000000    mov dword [ebp-0x4],0x0
00000017  C745F801000000    mov dword [ebp-0x8],0x1
0000001E  EB09              jmp short 0x29
00000020  8B45F8            mov eax,[ebp-0x8]
00000023  0145FC            add [ebp-0x4],eax
00000026  FF45F8            inc dword [ebp-0x8]
00000029  8B45F8            mov eax,[ebp-0x8]
0000002C  3B4508            cmp eax,[ebp+0x8]
0000002F  7EEF              jng 0x20
00000031  8B45FC            mov eax,[ebp-0x4]
00000034  C9                leave
00000035  C3                ret
00000036  55                push ebp
00000037  89E5              mov ebp,esp
00000039  6A05              push byte +0x5
0000003B  E8CAFFFFFF        call 0xa
00000040  83C404            add esp,byte +0x4
00000043  C9                leave
00000044  C3                ret

 

上記では0x0A~0x35番地までがsum()の処理になり、[ebp-0x8]に変数i、[ebp-0x4]に変数sum、そして[ebp+0x8]に引数がスタックに積まれています。

まず、0x29番地にジャンプし、引数と変数iの値をコピーしたeaxを0x2C番地のcmp命令で比較し、0x2F番地のjng(=jle)で二つの値の大小を確認します。

jngではZFに1がセットされているか、もしくはSFとOFが同じではないかでジャンプするかを決定します。

なお、jngは"Jump if Not Greater"の略で、jleは"Jump if Less or Equal"の略になり、これらのJ**命令(jzやjnzなど)では、各フラグレジスタの状態(0か1か)に応じてジャンプします。

 

Pythonによるスクリプトの作成

それでは、Pythonでeflagsによる条件分岐命令を実装していきます。

 

# emulator.py
class ModRM:
    def __init__(self):
        self.modrm = {
            "mod"       :0x00,
            "opecode"   :0x00,
            "reg_index" :0x00,
            "rm"        :0x00,
            "sib"       :0x00,
            "disp8"     :0x00,
            "disp32"    :0x00
        }

class Emulator:
    def __init__(self):
        self.register_name = ["EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI", "EDI"]
        self.registers = {
            "EAX": 0x00,
            "ECX": 0x00,
            "EDX": 0x00,
            "EBX": 0x00,
            "ESP": 0x00,
            "EBP": 0x00,
            "ESI": 0x00,
            "EDI": 0x00
            }
        self.eflags = 0x00
        self.memory = None
        self.eip = None
        self.instructions = [None for i in range(256)]

    def init_instructions(self):
        self.instructions[0x01] = self.add_rm32_r32
        self.instructions[0x3b] = self.cmp_r32_rm32
        self.instructions[0x40] = self.inc_eax
        for i in range(8):
            self.instructions[0x50+i] = self.push_r32
        for i in range(8):
            self.instructions[0x58+i] = self.pop_r32
        self.instructions[0x68] = self.push_imm32
        self.instructions[0x6a] = self.push_imm8
        self.instructions[0x70] = self.jo
        self.instructions[0x71] = self.jno
        self.instructions[0x72] = self.jc
        self.instructions[0x73] = self.jnc
        self.instructions[0x74] = self.jz
        self.instructions[0x75] = self.jnz
        self.instructions[0x78] = self.js
        self.instructions[0x79] = self.jns
        self.instructions[0x7c] = self.jl
        self.instructions[0x7e] = self.jle
        self.instructions[0x83] = self.code_83
        self.instructions[0x89] = self.mov_rm32_r32
        self.instructions[0x8b] = self.mov_r32_rm32
        for i in range(8):
            self.instructions[0xb8 + i] = self.mov_r32_imm32
        self.instructions[0xc3] = self.ret
        self.instructions[0xc7] = self.mov_rm32_imm32
        self.instructions[0xc9] = self.leave
        self.instructions[0xe8] = self.call_rel32
        self.instructions[0xe9] = self.near_jump
        self.instructions[0xeb] = self.short_jump
        self.instructions[0xff] = self.code_ff

    def create_emu(self, size, eip, esp):
        self.eip = eip
        self.registers["ESP"] = esp
        self.memory = [0x00 for _ in range(size)]

    def dump_registers(self):
        for i in range(len(self.registers)):
            name = self.register_name[i]
            print("{} = 0x{:08x}".format(name, self.registers[name]))
        print("EIP = 0x{:08x}".format(self.eip))

    def mov_r32_imm32(self):
        reg = self.get_code8(0) - 0xb8
        value = self.get_code32(1)
        reg_name = self.register_name[reg]
        self.registers[reg_name] = value
        self.eip += 5
        if self.eip >= 0x100000000:
            self.eip ^= 0x100000000

    def short_jump(self):
        diff = self.get_sign_code8(1)
        if diff & 0x80:
            diff -= 0x100
        self.eip += (diff + 2)

    def get_code8(self, index):
        code = self.memory[self.eip + index]
        if not type(code) == int:
            code = int.from_bytes(code, 'little')
        return code

    def get_sign_code8(self, index):
        code =  self.memory[self.eip + index]
        code = int.from_bytes(code, 'little')
        return code & 0xff

    def get_code32(self, index):
        ret = 0x00
        for i in range(4):
            ret |= self.get_code8(index + i) << (i * 8)
        return ret

    def get_sign_code32(self, index):
        return  self.get_code32(index)

    def near_jump(self):
        diff = self.get_sign_code32(1)
        if diff & 0x80000000:
            diff -= 0x100000000
        self.eip += (diff + 5)

    def parse_modrm(self):
        m = ModRM()
        code = self.get_code8(0)
        m.modrm["mod"] = ((code & 0xc0) >> 6)
        m.modrm["opecode"] = m.modrm["reg_index"] = ((code & 0x38) >> 3)
        m.modrm["rm"] = code & 0x07

        self.eip += 1
        if (m.modrm["mod"] != 3 and m.modrm["rm"] == 4):
            m.modrm["sib"] = self.get_code8(0)
            eip += 1
        if (m.modrm["mod"] == 0 and m.modrm["rm"] == 5) or m.modrm["mod"] == 2:
            m.modrm["disp32"] = self.get_sign_code32(0)
            m.modrm["disp8"] = m.modrm["disp32"] & 0xff
            eip += 4
        elif m.modrm["mod"] == 1:
            m.modrm["disp8"] = m.modrm["disp32"] = self.get_sign_code8(0)
            self.eip += 1

        return m

    def mov_rm32_imm32(self):
        self.eip += 1
        m = self.parse_modrm()
        value = self.get_code32(0)
        self.eip += 4
        self.set_rm32(m, value)

    def set_rm32(self, m, value):
        if m.modrm["mod"] == 3:
            self.set_register32(m.modrm["rm"], value)
        else:
            address = self.calc_memory_address(m)
            self.set_memory32(address, value)

    def set_memory8(self, address, value):
        self.memory[address] = value & 0xff

    def set_memory32(self, address, value):
        for i in range(4):
            self.set_memory8(address+i, value >> (i*8))

    def calc_memory_address(self, m):
        if m.modrm["mod"] == 0:
            if m.modrm["rm"] == 4:
                print("not implemented ModRM mod = 0, rm = 4")
                sys.exit(0)
            elif m.modrm["rm"] == 5:
                return m.modrm["disp32"]
            else:
                return self.get_register32(m.modrm["rm"])
        elif m.modrm["mod"] == 1:
            if m.modrm["rm"] == 4:
                print("not implemented ModRM mod = 1, rm = 4")
                sys.exit(0)
            else:
                return self.get_register32(m.modrm["rm"]) + m.modrm["disp8"]
        elif m.modrm["mod"] == 2:
            if m.modrm["rm"] == 4:
                print("not implemented ModRM mod = 2, rm = 4")
                sys.exit(0)
            else:
                return self.get_register32(m.modrm["rm"]) + m.modrm["disp32"]
        else:
            print("not implemented ModRM mod = 3")
            sys.exit(0)

    def mov_rm32_r32(self):
        self.eip += 1
        m = self.parse_modrm()
        r32 = self.get_r32(m)
        self.set_rm32(m, r32)

    def mov_r32_rm32(self):
        self.eip += 1
        m = self.parse_modrm()
        rm32 = self.get_rm32(m)
        self.set_r32(m, rm32)

    def get_rm32(self, m):
        if m.modrm["mod"] == 3:
            return self.get_register32(m.modrm["rm"])
        else:
            address = self.calc_memory_address(m)
            return self.get_memory32(address)

    def get_memory8(self, address):
        return self.memory[address]

    def get_memory32(self, address):
        ret = 0
        for i in range(4):
            mem = self.get_memory8(address + i)
            if not type(mem) == int:
                mem = ord(mem)
            ret |= mem << (8*i)
        return ret

    def set_r32(self, m, value):
        self.set_register32(m.modrm["reg_index"], value)

    def get_r32(self, m):
        return self.get_register32(m.modrm["reg_index"])

    def add_rm32_r32(self):
        self.eip += 1
        m = self.parse_modrm()
        r32 = self.get_r32(m)
        rm32 = self.get_rm32(m)
        self.set_rm32(m, rm32 + r32)

    def sub_rm32_imm8(self, m):
        rm32 = self.get_rm32(m)
        imm8 = self.get_sign_code8(0)
        self.eip += 1
        result = rm32 - imm8
        self.set_rm32(m, result)
        self.update_eflags_sub(rm32, imm8, result)

    def code_83(self):
        self.eip += 1
        m = self.parse_modrm()
        if m.modrm["opecode"] == 0:
            self.add_rm32_imm8(m)
        elif m.modrm["opecode"] == 5:
            self.sub_rm32_imm8(m)
        elif m.modrm["opecode"] == 7:
            self.cmp_rm32_imm8(m)
        else:
            print("not implemented: 83 /{}".format(m.modrm["opecode"]))
            sys.exit(1)

    def inc_rm32(self, m):
        value = self.get_rm32(m)
        self.set_rm32(m, value + 1)

    def inc_eax(self):
        self.registers["EAX"] += 1
        self.eip += 1

    def code_ff(self):
        self.eip += 1
        m = self.parse_modrm()

        if m.modrm["opecode"] == 0:
            self.inc_rm32(m)
        else:
            print("not implemented: FF /{}".format(m.modrm["opecode"]))
            sys.exit(1)

    def get_register32(self, index):
        reg = self.register_name[index]
        return self.registers[reg]

    def set_register32(self, index, value):
        reg = self.register_name[index]
        self.registers[reg] = value

    def push_r32(self):
        reg = self.get_code8(0) - 0x50
        self.push32(self.get_register32(reg))
        self.eip += 1

    def pop_r32(self):
        reg = self.get_code8(0) - 0x58
        self.set_register32(reg, self.pop32())
        self.eip += 1

    def push32(self, value):
        esp = self.register_name.index("ESP")
        address = self.get_register32(esp) - 4
        self.set_register32(esp, address)
        self.set_memory32(address, value)

    def pop32(self):
        esp = self.register_name.index("ESP")
        address = self.get_register32(esp)
        ret = self.get_memory32(address)
        self.set_register32(esp, address + 4)
        return ret

    def call_rel32(self):
        diff = self.get_sign_code32(1)
        if diff & 0x80000000:
            diff -= 0x100000000
        self.push32(self.eip + 5)
        self.eip += (diff + 5)

    def ret(self):
        self.eip = self.pop32()

    def leave(self):
        ebp = self.get_register32(self.register_name.index("EBP"))
        self.set_register32(self.register_name.index("ESP"), ebp)
        self.set_register32(self.register_name.index("EBP"), self.pop32())
        self.eip += 1

    def push_imm8(self):
        value = self.get_code8(1)
        self.push32(value)
        self.eip += 2

    def push_imm32(self):
        value = self.get_code32(1)
        self.push32(value)
        self.eip += 5

    def add_rm32_imm8(self, m):
        rm32 = self.get_rm32(m)
        imm8 = self.get_sign_code8(0)
        self.eip += 1
        self.set_rm32(m, rm32+imm8)

    def cmp_r32_rm32(self):
        self.eip += 1
        m = self.parse_modrm()
        r32 = self.get_r32(m)
        rm32 = self.get_rm32(m)
        result = r32 - rm32
        self.update_eflags_sub(r32, rm32, result)

    def cmp_rm32_imm8(self, m):
        rm32 = self.get_rm32(m)
        imm8 = self.get_sign_code8(0)
        print(rm32, imm8)
        self.eip += 1
        result = rm32 - imm8
        self.update_eflags_sub(rm32, imm8, result)

    def update_eflags_sub(self, v1, v2, result):
        sign1 = v1 >> 31
        sign2 = v2 >> 31
        signr = (result >> 31) & 1
        self.set_carry(result >> 32)
        self.set_zero(result == 0)
        self.set_sign(signr)
        self.set_overflow(sign1 != sign2 and sign1 != signr)

    def set_carry(self, is_carry):
        if is_carry:
            self.eflags |= CARRY_FLAG
        else:
            self.eflags &= ~CARRY_FLAG

    def set_zero(self, is_zero):
        if is_zero:
            self.eflags |= ZERO_FLAG
        else:
            self.eflags &= ~ZERO_FLAG

    def set_sign(self, is_sign):
        if is_sign:
            self.eflags |= SIGN_FLAG
        else:
            self.eflags &= ~SIGN_FLAG

    def set_overflow(self, is_overflow):
        if is_overflow:
            self.eflags |= OVERFLOW_FLAG
        else:
            self.eflags &= ~OVERFLOW_FLAG

    def is_carry(self):
        return (self.eflags & CARRY_FLAG) != 0

    def is_zero(self):
        return (self.eflags & ZERO_FLAG) != 0

    def is_sign(self):
        return (self.eflags & SIGN_FLAG) != 0

    def is_overflow(self):
        return (self.eflags & OVERFLOW_FLAG) != 0

    def j(func):
        def wrapper(self, *args, **kwargs):
            if func(self, *args, **kwargs):
                diff = self.get_sign_code8(1)
            else:
                diff = 0
            self.eip += (diff + 2)
        return wrapper

    def jn(func):
        def wrapper(self, *args, **kwargs):
            if func(self, *args, **kwargs):
                diff = 0
            else:
                diff = self.get_sign_code8(1)
            self.eip += (diff + 2)
        return wrapper

    @j
    def jc(self):
        return self.is_carry()

    @jn
    def jnc(self):
        return self.is_carry()

    @j
    def js(self):
        return self.is_sign()

    @jn
    def jns(self):
        return self.is_sign()

    @j
    def jz(self):
        return self.is_zero()

    @jn
    def jnz(self):
        return self.is_zero()

    @j
    def jo(self):
        return self.is_overflow()

    @jn
    def jno(self):
        return self.is_overflow()

    def jl(self):
        if self.is_sign() != self.is_overflow():
            diff = self.get_sign_code8(1)
            if diff & 0x80:
                diff -= 0x100
        else:
            diff = 0
        self.eip += (diff + 2)

    def jle(self):
        if self.is_zero() or self.is_sign() != self.is_overflow():
            diff = self.get_sign_code8(1)
            if diff & 0x80:
                diff -= 0x100
        else:
            diff = 0
        self.eip += (diff + 2)

CARRY_FLAG = 1
ZERO_FLAG = 1 << 6
SIGN_FLAG = 1 << 7
OVERFLOW_FLAG = 1 << 11

mem_size = 1024 * 1024

emu = Emulator()
emu.create_emu(mem_size, 0x7c00, 0x7c00)
binary = open('sum.bin', 'rb')
offset = 0x7c00
while True:
    b = binary.read(1)
    if b == b'':
        break
    emu.memory[offset] = b
    offset += 1
binary.close()

emu.init_instructions()
while emu.eip < mem_size:
    code = emu.get_code8(0)
    print("EIP = 0x{:02x}, Code = 0x{:02x}".format(emu.eip, code))
    if emu.instructions[code] == None:
        print("\n\nNot Implemented: 0x{:02x}".format(code))
        break
    emu.instructions[code]()
    if emu.eip == 0x00:
        print("\n\nend of program.\n\n")
        break

emu.dump_registers()

 

動作確認

それでは、上記で作成したスクリプトを実行してみます。

なお、事前にアセンブリ言語のプログラムはbinファイルとしてビルドしておきます。

 

 > python emulator.py
 EIP = 0x7c00, Code = 0xe8
 EIP = 0x7c36, Code = 0x55
 EIP = 0x7c37, Code = 0x89
 EIP = 0x7c39, Code = 0x6a
 EIP = 0x7c3b, Code = 0xe8
 EIP = 0x7c0a, Code = 0x55
 EIP = 0x7c0b, Code = 0x89
 EIP = 0x7c0d, Code = 0x83
 EIP = 0x7c10, Code = 0xc7
 EIP = 0x7c17, Code = 0xc7
 EIP = 0x7c1e, Code = 0xeb
 EIP = 0x7c29, Code = 0x8b
 EIP = 0x7c2c, Code = 0x3b
 EIP = 0x7c2f, Code = 0x7e
 EIP = 0x7c20, Code = 0x8b
 EIP = 0x7c23, Code = 0x01
 EIP = 0x7c26, Code = 0xff
 EIP = 0x7c29, Code = 0x8b
 EIP = 0x7c2c, Code = 0x3b
 EIP = 0x7c2f, Code = 0x7e
 EIP = 0x7c20, Code = 0x8b
 EIP = 0x7c23, Code = 0x01
 EIP = 0x7c26, Code = 0xff
 EIP = 0x7c29, Code = 0x8b
 EIP = 0x7c2c, Code = 0x3b
 EIP = 0x7c2f, Code = 0x7e
 EIP = 0x7c20, Code = 0x8b
 EIP = 0x7c23, Code = 0x01
 EIP = 0x7c26, Code = 0xff
 EIP = 0x7c29, Code = 0x8b
 EIP = 0x7c2c, Code = 0x3b
 EIP = 0x7c2f, Code = 0x7e
 EIP = 0x7c20, Code = 0x8b
 EIP = 0x7c23, Code = 0x01
 EIP = 0x7c26, Code = 0xff
 EIP = 0x7c29, Code = 0x8b
 EIP = 0x7c2c, Code = 0x3b
 EIP = 0x7c2f, Code = 0x7e
 EIP = 0x7c20, Code = 0x8b
 EIP = 0x7c23, Code = 0x01
 EIP = 0x7c26, Code = 0xff
 EIP = 0x7c29, Code = 0x8b
 EIP = 0x7c2c, Code = 0x3b
 EIP = 0x7c2f, Code = 0x7e
 EIP = 0x7c31, Code = 0x8b
 EIP = 0x7c34, Code = 0xc9
 EIP = 0x7c35, Code = 0xc3
 EIP = 0x7c40, Code = 0x83
 EIP = 0x7c43, Code = 0xc9
 EIP = 0x7c44, Code = 0xc3
 EIP = 0x7c05, Code = 0xe9


 end of program.


 EAX = 0x0000000f
 ECX = 0x00000000
 EDX = 0x00000000
 EBX = 0x00000000
 ESP = 0x00007c00
 EBP = 0x00000000
 ESI = 0x00000000
 EDI = 0x00000000
 EIP = 0x00000000

 

問題なく条件分岐が実行され、eaxに合計値の15(0x0f)が格納できたことが確認できました。

 

参考書籍

自作エミュレータで学ぶx86アーキテクチャ-コンピュータが動く仕組みを徹底理解!

デバッガによるx86プログラム解析入門【x64対応版】